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REMARK ON PARTICLE TRAJECTORY FLOWS WITH

UNBOUNDED VORTICITY

Hee Chul Pak*

Abstract. The existence and the regularity of the particle trajec-
tory flow X(x, t) along a velocity field u on Rn are discussed under
the BMO-blow-up condition:∫ T

0

‖ω(τ)‖BMOdτ <∞

of the vorticity ω ≡ ∇× u. A comment on our result related with
the mystery of turbulence is presented.

1. Background and the main assertion

The non-stationary Euler equations of a perfect incompressible fluid
are

∂

∂t
u+ (u,∇)u = −∇p,(1.1)

div u = 0.

Here u(x, t) = (u1, u2, · · · , un) represents the velocity of a fluid flow, and
p(x, t) is the scalar pressure.

One of the most outstanding open problems in the mathematical
theory of fluid mechanics is, for dimension 3, either to prove the global-
in-time continuation of local solution, or to find an initial datum for
which the associated local solution blows up in finite time. A sig-
nificant achievement in this direction is the Beale-Kato-Majda(BKM)
criterion[1] for the finite time blow-up of solution u, which states as fol-
lows: Suppose the initial velocity u(0) locates in Sobolev space Hs(R3)
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with s > 5
2 , then

u ∈ L∞([0, T ];Hs(R3))

if and only if

ω ∈ L1([0, T ];L∞(R3))(1.2)

where ω = ∇ × u is the vorticity. Some numerical observations and
computations have indicated that the velocity u may not blow up even
if the corresponding vorticity ω blows up as an unbounded function of
space variables[13]. Even though this observation does not violate the
BKM-criterion, it insists that some velocities staying in a Sobolev space
may allow unbounded vorticities. It was recently noted by Kozono-
Taniuchi[7] that one could replace L∞-norm in (1.2) by BMO-norm;

ω ∈ L1([0, T ];BMO(R3)).(1.3)

(For other generalizations and variants of the BKM theorem, see [2, 5,
6, 8, 12].) According to these updates, we can safely exclude such pos-
sibilities because those spaces (including BMO) contain singular (un-
bounded) functions such as logarithmic functions. In this context, it
is worth paying attention to the regularity problem corresponding to
unbounded vorticity.

Associated with the Euler equations, we have a system of ordinary
differential equations{

∂

∂t
X(a, t) = u(X(a, t), t),

X(a, 0) = a,
(1.4)

which defines particle trajectory flows X(a, t) along the velocity u, start-
ing from initial position a. By turning our attention into the regularity
of the flow X(a, t), we expect a better understanding in the regularity
of velocity. In this short communication, we deal with the existence and
the regularity of the particle trajectory flows with unbounded vorticity.

It is well known that the Lipschitz condition:

|u(x, t)− u(y, t)| ≤ L|x− y|
(L is a constant) is sufficient to ensure unique existence of solution to
(1.4). This condition however is not necessary. One of the necessary
and sufficient conditions is known as∫ ε

0

dr

|u(x, t)− u(y, t)|
=∞,(1.5)

where r := |x − y|(see, [4, 9]). For example, the latter condition is
satisfied with |u(x, t) − u(y, t)| ∝ r log r, referred to as log-Lipschitz
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condition. Therefore, if we suppose vorticity ω ≈ |u(x,t)−u(y,t)|
r in some

sense, then the log-Lipschitz case corresponds to vorticity

ω ≈ |u(x, t)− u(y, t)|
r

∝ log r.

This goes along with the BMO-criterion (1.3). Therefore the regularity
condition of the Euler equations (1.1) seems to be in parallel with that of
the equations of trajectory flows (1.4)[10]. This turns the PDE-problem
into an ODE-problem.

In this paper, we ask a question of the existence and the regularity
of the trajectory flow (1.4) under the condition (1.3). Here is our main
result:

Theorem 1.1. Let n be the spacial dimension and T > 0. For any
vector field (of distribution) u, suppose ω = ∇× u is the vorticity field
belonging to L1([0, T ];BMO(Rn)). Then there exists a unique flow X,
continuous in [0, T ]×Rn, with values in Rn, satisfying the system (1.4).

We have no information about the regularity of the initial velocities
in the hypothesis of the theorem, and so BKM-criterion (1.3) might not
work here. However, the theorem asserts that, at least, the continuity
of the flows should be allowed.

We recall that the space BMO consists of all locally integrable func-
tions such that

‖f‖BMO := sup
r>0

1

|Q(x; r)|

∫
Q(x;r)

|f(x)− fQ|dx

is finite, where Q(x; r) is a cube centered at x and of diameter r and
fQ = 1

|Q|
∫
Q f(x)dx.

The main difficulty of the proof is that no direct embedding of the
velocity u into the space of log-Lipschitzian vector fields can be possible.
However, it is possible to decompose u into a smooth part and a log-
Lipschitzian part, so that we can regard it as log-Lipschitzian locally. For
the decomposition, we note that the space BMO(Rn) is equivalent to

the homogeneous Triebel-Lizorkin space Ḟ 0
∞,2(Rn) [15]. That is, we turn

BMO-norm into Ḟ 0
∞,2-norm via the Littlewood-Paley decomposition.

For it, we consider a smooth nonnegative radial function χ satisfying
supp χ ⊂ {ξ ∈ Rn : |ξ| ≤ 5

6}, and χ = 1 for |ξ| ≤ 3
5 . Set hj(ξ) :=

χ(2−j−1ξ)− χ(2−jξ), and we notice that

χ(ξ) +

∞∑
j=0

hj(ξ) = 1, for ξ ∈ Rn.
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Let ϕj and Φ be defined by ϕj := F−1(hj), j ∈ Z and Φ := F−1(χ),
where F denotes the Fourier transform on Rn. For f ∈ S ′, we denote
∆jf ≡ hj(D)f = ϕj ∗ f (j ∈ Z). Then there exists a constant C0 such
that for all f ∈ BMO(Rn) we have

1

C0

∥∥∥∥∥∥
∑
j∈Z

∆jf

∥∥∥∥∥∥
BMO

≤

∥∥∥∥∥∥∥
∑
j∈Z
|∆jf |2

1/2
∥∥∥∥∥∥∥
L∞

≤ C0 ‖f‖BMO
.

2. The argument

For any x0 ∈ Rn, we will show that there exists a unique continuous
solution x(·) on [0, T ] satisfying

x(t) = x0 +

∫ t

0
u(x(s), s)ds.(2.1)

Let B be an open ball centered at x0. We choose x, y ∈ B with
|x− y| < 1. Then for an arbitrary nonnegative integer N , we have

|u(x, t)− u(y, t)| =

∣∣∣∣∣∣
∞∑

j=−∞
∆ju(x, t)−∆ju(y, t)

∣∣∣∣∣∣
≤

∥∥∥∥∥∥
∑
j>N

|∆ju|

∥∥∥∥∥∥
L∞(Rn)

+

∥∥∥∥∥∥
N∑
j=0

|∆j∇u|

∥∥∥∥∥∥
L∞(Rn)

|x− y|

+ 2 ‖Φ ∗ ∇u‖L∞(B) |x− y|.(2.2)

We estimate the first term of (2.2):∥∥∥∥∥∥
∑
j>N

|∆ju|

∥∥∥∥∥∥
L∞(Rn)

≤

∥∥∥∥∥∥∥
∑
j≥N

22j |∆ju|2
1/2

∥∥∥∥∥∥∥
L∞

2√
3

(
1

2

)N+1

≤ C2−N−1 ‖∇u‖BMO

≤ C2−N−1 ‖ω‖BMO .(2.3)

For the second term, we have

∥∥∥∥∥∥
N∑
j=0

|∆j∇u|

∥∥∥∥∥∥
L∞(Rn)

≤ C(N + 1) ‖∇u‖BMO ≤ C(N + 1) ‖ω‖BMO .

(2.4)
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Since ∇u(x) exists for almost every x, and so Φ ∗∇u is smooth, the last
term of (2.2) is bounded on B:

‖Φ ∗ ∇u‖L∞(B) ≤MB,u,(2.5)

for some MB,u > 0. Choosing N = [− log2 |x− y|] and collecting terms
(2.3), (2.4), (2.5), we have

|u(x)− u(y)| ≤ CB,u(1− log2 |x− y|)|x− y|,

where CB,u is a constant depending only on B and u. This implies that u
satisfies the condition (1.5) on B. So, for sufficiently small time interval
[0, t], we can localize to find a unique continuous flow x(·) starting from
position x0. (The temporal localization is needed for the flow to stay
within the ball B.) Continuing this process, we obtain an existence of
flow X(x0, ·) = x(·) as long as the vorticity ω exists, that is to say, it
exists on the time interval [0, T ].

It remains to show the spatial regularity of the flow X(·, t). To ac-
complish this, consider two integral curves X(x, t) and X(y, t), starting
from two distinct points x and y, respectively, inside an open ball B of
radius less than 1/2. So we have |x− y| < 1. We observe

|X(x, t)−X(y, t)|

≤ |x− y|+
∫ t

0
|u(X(x, τ), τ)− u(X(y, τ), τ)|dτ

≤ |x− y|+ CB,u

∫ t

0
(1− log2 |X(x, τ)−X(y, τ)|)|X(x, τ)−X(y, τ)|dτ.

We now let Y (t) ≡ |X(x, t)−X(y, t)|, and so Y (0) ≡ |x− y|. Then this
inequality is equivalent to

d

dt
Y (t) ≤ CB,u(1− log2 Y (t))Y (t).(2.6)

We solve a separable ordinary differential inequality (2.6). Indeed, inte-

grating both sides of Ẏ
(1−log2 Y )Y ≤ CB,u on [0, t], we get

Y (t) ≤ Y (0)exp(−CB,ut)21−exp(−CB,ut).

That is,

|X(x, t)−X(y, t)| ≤ α|x− y|β,

for some positive constants α, β depending only on B, u and t. This
implies the spacial continuity of X(·, t). �
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3. Remarks connected with turbulence

1. There may exist discontinuous flows which are corresponding to the
vorticities outside BMO.
2. Turbulence is the last mystery of the classical mechanics. There
is no valid physical and mathematical theories for occurrence and no
foresight on turbulence yet. So it is openly said that ‘turbulence is a
riddle wrapped in a mystery inside an enigma’.

T. Kato himself described the BKM-criterion as “the solution does
not blow up unless the vorticity does”. Our result can be retold as “the
solution does blow up when the continuity of the flow breaks down”.
Therefore, supposing that the turbulence occurs exactly at the discon-
tinuous points of the flow, this explains a direct relationship among the
turbulence, blowing up of a vorticity and the regularity of velocity field.
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